首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   9篇
  2014年   2篇
  2013年   7篇
  2012年   4篇
  2011年   9篇
  2010年   10篇
  2009年   15篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   8篇
  2002年   3篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1975年   4篇
  1973年   5篇
  1972年   3篇
  1971年   6篇
  1968年   2篇
  1959年   8篇
  1958年   12篇
  1957年   6篇
  1956年   15篇
  1955年   23篇
  1954年   16篇
  1953年   19篇
  1952年   15篇
  1951年   12篇
  1950年   11篇
  1949年   2篇
  1948年   6篇
  1947年   2篇
  1935年   1篇
  1934年   3篇
  1933年   1篇
  1931年   1篇
  1919年   1篇
排序方式: 共有334条查询结果,搜索用时 296 毫秒
61.
基因治疗是未来临床医学最具潜力的治疗方式,目前阻碍临床基因治疗发展的主要因素是缺乏安全和高效的基因载体,因此研究理想的非病毒转基因载体具有重要的意义.构建了由质粒DNA(D)-抗DNA抗体(A)-阳离子脂质体(C)组成的三元复合纳米基因载体(DAC),研究表明,三组分在磷酸缓冲液中可通过分子组装形成复合纳米胶束,DAC在细胞培养中表现出显著高效的基因表达,DAC在血管平滑肌细胞中的基因转染效率比不含抗DNA抗体的二元组合(DC)高4倍,比不含阳离子脂质体的二元组合(DA)约高11倍.激光共聚焦荧光显微观察证明,DAC细胞摄取量和DNA进入细胞核的量均明显高于对照组,而DC二元组合(不含抗DNA抗体)的DNA很少进入细胞核,细胞在DAC存在下生长正常.未发现细胞毒性.研究结果提示,DAC的作用机理主要是三元复合胶束中DNA的装载量比二元载体大得多,抗DNA抗体与阳离子脂质体的协同作用明显有利于DNA被细胞摄取和胞吞,从而提高了基因的转染和表达.  相似文献   
62.
A new strategy based on treating PCR hybrids with S1 nuclease was used to differentiate between two PVY isolates. Mixed denatured and annealed hybrid PCR products of two PVY isolates including a tested strain and a reference N strain were treated with S1 nuclease. Single-stranded mismatched regions were revealed by the S1 nuclease cleavage, yielding a characteristic pattern of bands in polyacrylamide gel by which virus isolates could be matched. Sequence analysis of the relevant PCR products revealed that only part of the mismatched regions were cleaved by the S1 nuclease. Still, the distinct pattern of degradation products enabled the differentiation between the PVY isolates. The general application of this procedure for strain differentiation is discussed.  相似文献   
63.
A contextual analysis combined with path analysis was applied to detect ecotype-specific past selection in hierarchically structured populations of wild barley, Hordeum spontaneum . In our analysis a multiple regression model incorporated several individual and ecotype-level unmeasured (derived) traits obtained by factor analysis from 20 measured morphological and phenological traits. Under favourable conditions (high water and nutrients) both individual and ecotype plant size (RF1) were significant predictors of individual plant fitness, estimated by either reproductive biomass or yield. Both individual and ecotype size of reproductive structures (RF2) were significantly related to individual reproductive biomass. Individual yield, however, significantly correlated with ecotype RF2 only. Transition to reproduction (RF3) correlated with neither reproductive biomass nor yield at individual level, but correlated with two estimates of fitness at ecotype level. In all cases, selection at the individual and ecotype levels was in opposition. We interpret the observed effect of ecotype identity on individual fitness not as a current group selection, but as a constraining effect of ecotype-specific past selection. The four ecotypes went through an environmentally specific selection process in their own environments with the optimal strategy evolved. Consequently, this strategy may have a constraining effect on plant performance in other environments. Under conditions of either low water or low nutrients the ecotype level did not contribute to individual fitness. The latter may suggest that a mechanism for plant responses to stress is largely independent of plant origin, with a difference between ecotypes under stressful conditions due entirely to the difference in amount, not architecture, of plasticity. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 313–318.  相似文献   
64.
Variation in tolerance to nutrient limitations may contribute to the differential success of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) on acid soils. The objectives of this study were to examine these relationships as influenced by light environment and test whether sensitivity to nutrient stress is mediated by oxidative stress. First-year sugar maple and red seedlings were grown on forest soil cores contrasting in nutrient availability under high or low light intensity. Foliar nutrition, photosynthesis, growth and antioxidant enzyme activity were assessed. Photosynthesis and growth of sugar maple were significantly lower on nutrient-poor soils and were correlated with leaf nutrient status with Ca and P having the strongest influence. For red maple, only chlorophyll content showed sensitivity to the nutrient-poor soils. High light exacerbated the negative effects of nutrient imbalances on photosynthesis and growth in sugar maple. Antioxidant enzyme activity in sugar maple was highest in seedlings growing on nutrient-poor soils and was inversely correlated with photosynthesis, Ca, P, and Mg concentrations. These results suggest that: (1) sugar maple is more sensitive to nutrient stresses associated with low pH soils than red maple; (2) high light increases sugar maple sensitivity to nutrient stress; (3) the negative effects of nutrient imbalances on sugar maple may be mediated by oxidative stress.  相似文献   
65.
The response of potato cultivars to water salinity was studied under field conditions in sandy loessial soil in the arid desert of Southern Israel. The potatoes were drip-irrigated with water of three different salinities: water commonly used for irrigation (1.0–1.4 dS m-1); saline water from a local well (6.1–6.9 dS m-1); and a mixture of the two (3.84.3 dS m-1). Salinity retarded plant emergence, enhanced haulm senescence and reduced growth of both haulms and tubers. Increasing the salinity progressively reduced tuber yields. Application of the saline water well after plant establishment (Expt A) decreased tuber yields by 615% and 22–31% in the intermediate and the high salinities, respectively. When irrigation with saline water was started soon after planting (Expt B), tuber yields were decreased by 0–17% and 21–79% in the intermediate and the high salinities, respectively. When the tubers emerged in salinised soil, tuber yields were decreased by 21–54% and 42–59% in the intermediate and the high salinities, respectively. A differential response of various cultivars to salinity was observed. None of the potato cultivars or clones exhibited exceptional tolerance to severe salinity. The earlier maturing cvs Atica and Désirée were the least susceptible to the moderate salinity imposed throughout the entire growing season; however, no association was noted between maturation time and the response to salinity.  相似文献   
66.
67.
The release, dispersal, and ultrastructure of juveniles arising through multiple fission in the benthic foraminiferan Allogromia sp., strain NF (Lee & Pierce, 1963) has been examined by light and electron microscopy. An extensive reticulopodial network participates in the dispersal of fully differentiated young as they emerge from the fragmented parental test. During the earliest stages of release, offspring are of two classes—aroused and unaroused. Unaroused juveniles, which have not extended pseudopods, attach externally to the network and are transported bidirectionally along its surface. Aroused juveniles, which have extended pseudopods and are in protoplasmic continuity with the network, move quickly to the periphery of the network. Within 24 h, juveniles establish a communal “feeding reticulum” in which dispersed individuals are in protoplasmic continuity with neighbors via a common reticulopodial network. At the ultrastructural level, the cell body cytoplasm of unaroused juveniles contains numerous patches of a paracrystalline material, which disappears as their pseudopodia are extended to join the communal feeding reticulum. This paracrystalline material therefore appears to be a temporary reservoir of precursors required for pseudopod construction.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号